Parity-time phase transition in photonic crystals with $$C_{6v}$$ symmetry
نویسندگان
چکیده
منابع مشابه
Topologically protected bound states in photonic parity-time-symmetric crystals.
Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently deba...
متن کاملSymmetry reduction in group 4mm photonic crystals
The size of absolute band gaps in two-dimensional photonic crystals is often limited by band degeneracies at the lattice symmetry points. By reducing the lattice symmetry, these degeneracies can be lifted to increase the size of existing photonic band gaps, or to create new gaps where none existed for the more symmetric structure. Specifically, symmetry reduction by the addition of different di...
متن کاملPhase Properties of One-Dimensional Quaternary Photonic Crystals
In this paper, properties of reflection phase in one-dimensional quaternary photonic crystals combining dispersive meta-materials and positive index materials are investigated by transfer matrix method. Two omnidirectional band gaps are located in the band structure of considered structure. However, we limit our studies to the frequency range of the second wide band gap. We observe that the val...
متن کاملPhase transition in multimode nonlinear parity-time-symmetric waveguide couplers
Parity-time-symmetric (-symmetric) optical waveguide couplers offer new possibilities for fast, ultracompact, configurable, all-optical signal processing. Here, we study nonlinear properties of finite-size multimode -symmetric couplers and predict the nonlinear oscillatory dynamics that can be controlled by three parameters: input light intensity, gain and loss amplitude, and input beam profile...
متن کاملAnti-parity–time symmetry with flying atoms
The recently developed notion of parity–time (PT) symmetry in optical systems has spawned intriguing prospects. So far, most experimental implementations have been reported in solid-state systems. Here, we report the first experimental demonstration of optical anti-PT symmetry—the counterpart of conventional PT symmetry—in a warm atomic-vapour cell. Rapid coherence transport via flying atoms le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2020
ISSN: 2045-2322
DOI: 10.1038/s41598-020-72716-x